МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский государственный гуманитарный университет» (ФГБОУ ВО «РГГУ»)

ИНСТИТУТ ИНФОРМАЦИОННЫХ НАУК И ТЕХНОЛОГИИ БЕЗОПАСНОСТИ ФАКУЛЬТЕТ ИНФОРМАЦИОННЫХ СИСТЕМ И БЕЗОПАСНОСТИ Кафедра информационных технологий и систем

МЕТОДЫ И СРЕДСТВА АНАЛИЗА БОЛЬШИХ ДАННЫХ РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

38.03.01 Экономика

Код и наименование направления подготовки/специальности

Экономика и анализ данных

Наименование специализации

Уровень высшего образования: бакалавриат

Форма обучения: очно-заочная

РПД адаптирована для лиц с ограниченными возможностями здоровья и инвалидов

МЕТОДЫ И СРЕДСТВА АНАЛИЗА БОЛЬШИХ ДАННЫХ

Рабочая программа дисциплины

Составитель:

к.т.н., доцент кафедры информационных технологий и систем Е.Б. Карелина

УТВЕРЖДЕНО:

Протокол заседания кафедры

№ 3 от 28 марта 2024 года

ОГЛАВЛЕНИЕ

1	По	яснительная записка	4
	1.1	Цель и задачи дисциплины	4
	1.2	Перечень планируемых результатов обучения по дисциплине, соотнесенных	
	инди	каторами достижения компетенций	4
	1.3	Место дисциплины в структуре основной образовательной программы	
2	Ст	руктура дисциплины	5
3	Co	держание дисциплины	5
4	Об	разовательные технологии	6
5	Оц	енка планируемых результатов обучения	6
	5.1	Система оценивания	6
	5.2	Критерии выставления оценки по дисциплине	7
	5.3	Оценочные средства (материалы) для текущего контроля успеваемости,	
	пром	ежуточной аттестации обучающихся по дисциплине	9
6	y_{q_0}	ебно-методическое и информационное обеспечение дисциплины	11
	6.1	Список источников и литературы	11
	6.2	2 Перечень ресурсов информационно-телекоммуникационной сети «Интерне-	
		12	
	6.3	Профессиональные базы данных и информационно-справочные системы	12
7	Ma	териально-техническое обеспечение дисциплины	12
8	Об	еспечение образовательного процесса для лиц с ограниченными возможностя	имк
9	Me	тодические материалы	
	9.1	Планы практических занятий	
П	копи п	кение 1. Аннотация рабочей программы лисциплины	18

1 Пояснительная записка

1.1 Цель и задачи дисциплины

<u>Цель дисциплины:</u> формирование компетенций в области использования информации, обработки и анализа ее для информационно-аналитической поддержки принятия управленческих решений, изучение методов обработки структурированных и неструктурированных многообразных данных огромных объёмов для получения воспринимаемых человеком результатов.

Задачи:

- приобретение знаний о технологиях подготовки, хранения, обработки и анализа больших данных;
- приобретение практических навыков работы большими данными
- изучение методов хранения и управления данными формата Big Data;
- изучение методов организации и анализа данных формата Big Data.

1.2 Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Индикаторы компетенций	Результаты обучения
(код и наименова-	(код и наименование)	
ние)		
ПК – 3 Способен	ПК – 3.1 Анализирует и ин-	Знать: методы извлечения
анализировать и	терпретирует полученные ре-	знаний из данных.
оценивать состояние	зультаты по сегментам финан-	Уметь: анализировать
сегментов финансо-	сового рынка, участникам фи-	современные потоки данных,
вого рынка, участ-	нансовых рынков, деятельно-	находить, извлекать и
ников финансовых	сти хозяйствующих субъектов,	структурировать данные.
рынков, деятельно-	в том числе с применением	Владеть: современными
сти хозяйствующих	современных информацион-	методами анализа полученных
субъектов, в том	ных технологий	результатов по сегментам
числе с применени-		финансового рынка.
ем современных ин-	ПК – 3.2 Использует результа-	Знать: основные принципы и
формационных тех-	ты для мониторинга финансо-	методы хранения, управления,
нологий	вых рынков, их участников,	обработки, анализа данных
	деятельности хозяйствующих	формата Big Data.
	субъектов, для составления	Уметь: строить модели для
	прогнозов, в том числе с при-	данных, хранящихся в
	менением современных ин-	распределенной файловой
	формационных технологий	системе
		Владеть: современными
		инструментальными
		средствами прогнозного
		моделирования и анализа
		данных.
ПК – 4 Способен	ПК – 4.1 Готовит аналитиче-	Знать: инновационные инстру-
составлять аналити-	ские материалы и отчеты, в	ментальные средства ИТ-сферы
ческие материалы,	том числе с применением со-	для работы с большими дан-
отчеты, доклады для	временных информационных	ными.
принятия обосно-	технологий.	Уметь: работать с программ-
ванных финансовых		ными средствами для хранения
и инвестиционных		и анализа данных.
решений, в том чис-		Владеть навыками проектиро-

ле с применением		вания информационных про-
современных ин-		цессов и систем с использова-
формационных тех-		нием инновационных инстру-
нологий		ментальных средств.
	ПК – 4.2 Разрабатывает пред-	Знать: технологии хранения
	ложения для принятия обос-	больших данных.
	нованных финансовых и инве-	Уметь: разрабатывать и адап-
	стиционных решений, в том	тировать программные компо-
	числе с применением совре-	ненты работы с данными для
	менных информационных	нужд предприятия.
	технологий	Владеть: инструментами Data
		Mining.

1.3 Место дисциплины в структуре основной образовательной программы

Дисциплина «Методы и средства анализа больших данных» является дисциплиной части, формируемой участниками образовательных отношений блока Б1 учебного плана.

Для освоения дисциплины необходимы знания, умения и владения, сформированные в ходе изучения следующих дисциплин и прохождения практик: «Базы данных», «Программирование (Python)», «Алгоритмы и структуры данных».

В результате освоения дисциплины формируются знания, умения и владения, необходимые для прохождения Практики по профилю профессиональной деятельности.

2 Структура дисциплины

Общая трудоёмкость дисциплины составляет 3 з.е., 108 академических часа.

Структура дисциплины для очно-заочной формы обучения

Объем дисциплины в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Семестр	Тип учебных занятий	Количество
		часов
7	Лекции	10
7	Практические работы	14
	Всего:	24

Объем дисциплины (модуля) в форме <u>самостоятельной работы обучающихся</u> составляет 84 академических часов.

3 Содержание дисциплины

No	Наименование раздела	Содержание	
	дисциплины		
1	Введение в большие	Предпосылки формирования тренда больших	
	данные	данных. Основные вызовы больших данных (4V).	
		Определение термина "большие данные". Базовое	
		представление о Мар Reduce и Hadoop. Представление	

		о работе аналитика. Процесс аналитики. Принципы аналитики.
2	Введение в Data Mining	Введение в когнитивный анализ данных. Классификация задач. Функция конкурентного сходства. Разработка алгоритмов на базе FRiS-функции. Существующие подходы к решению задачи распознавания. Информативность и выбор признаков. Обнаружение ошибок и заполнение пробелов
3	Основы языка R	Общие сведения о языке R. Структура языка. Функции. Объекты. Поведение объектов. Выражения. Основные функции. Специальные значения. Приведение типов. Константы (векторы: числовые, буквенные; символы). Операторы (приоритет операций, присвоение). Выражения. Управляющие структуры (условный оператор; цикл). Структуры данных (индексы: вектор чисел, вектор логических значений, имена). Примитивные типы. Векторы, списки, матрицы, массивы. Таблицы "объект-свойство"
4	Инструменты Data Mining	Обзор решений. Возможности. Достоинства и недостатки. Области применимости. Weka. Визуализация. R как инструмент Data Mining. Хранение и доступ к данным по средствам Data Frame. Импорт и экспорт. Классификация. Регрессия. Кластеризация. R и Hadoop. Основные библиотеки для Data Mining. Возможности библиотеки Pandas.
5	Технологии хранения больших данных	Зачем нужны новые хранилища. Свойства больших данных и ограничения RDBMS. Определение BigData (3V). Определение BigData (5V+). Скорость, Масштаби-рование, разнообразие в RDBMS. Структурированность данных. ACID требования, CAP-теорема, BASE архитектура. Что такое NoSQL. Типы NoSQL. Базы «ключ-значение». Колоночные базы. Документо-ориентированные базы. Графовые базы Интерфейсы NoSQL баз. Технология распределенных вычислений МарReduce. Упрощенная схема МарReduce. Распределение задания, операции тар и reduce.

4 Образовательные технологии

Для проведения учебных занятий по дисциплине используются различные образовательные технологии. Для организации учебного процесса может быть использовано электронное обучение и (или) дистанционные образовательные технологии.

5 Оценка планируемых результатов обучения

5.1 Система оценивания

Форма контроля	Макс. количество баллов	
	За одну работу	Всего
Текущий контроль:		

- защита практических работ	15 баллов	60 баллов
Промежуточная аттестация		40 баллов
(зачет с оценкой)		
Итого за семестр		100 баллов

Полученный совокупный результат конвертируется в традиционную шкалу оценок и в шкалу оценок Европейской системы переноса и накопления кредитов (European Credit Transfer System; далее – ECTS) в соответствии с таблицей:

100-балльная шкала Традиционная шкала			Шкала ECTS
95 – 100 83 – 94	Отлично		A
68 – 82	Хорошо	зачтено	B C
56 – 67 50 – 55	Удовлетворительно		D E
20 – 49	II average warman way wa		FX
0 – 19	Неудовлетворительно	не зачтено	F

5.2 Критерии выставления оценки по дисциплине

Баллы/	Оценка по дисци-	Критерии оценки результатов обучения по дисциплине
Шкала ECTS	плине	
100-83/	«отлично»/	Выставляется обучающемуся, если он глубоко и проч-
A,B	«зачтено (отлич-	но усвоил теоретический и практический материал,
	но)»/	может продемонстрировать это на занятиях и в ходе
	«зачтено»	промежуточной аттестации.
		Обучающийся исчерпывающе и логически стройно из-
		лагает учебный материал, умеет увязывать теорию с
		практикой, справляется с решением задач профессио-
		нальной направленности высокого уровня сложности,
		правильно обосновывает принятые решения.
		Свободно ориентируется в учебной и профессиональ-
		ной литературе.
		Оценка по дисциплине выставляются обучающемуся с
		учётом результатов текущей и промежуточной атте-
		стации.
		Компетенции, закреплённые за дисциплиной, сформи-
		рованы на уровне – «высокий».
82-68/	«хорошо»/	Выставляется обучающемуся, если он знает теоретиче-
C	«зачтено (хоро-	ский и практический материал, грамотно и, по суще-
	шо)»/	ству, излагает его на занятиях и в ходе промежуточной
	«зачтено»	аттестации, не допуская существенных неточностей.
		Обучающийся правильно применяет теоретические по-
		ложения при решении практических задач профессио-
		нальной направленности разного уровня сложности,
		владеет необходимыми для этого навыками и приёма-
		ми.

Баллы/ Шкала ECTS	Оценка по дисциплине	Критерии оценки результатов обучения по дисциплине
		Достаточно хорошо ориентируется в учебной и профессиональной литературе. Оценка по дисциплине выставляются обучающемуся с учётом результатов текущей и промежуточной аттестации. Компетенции, закреплённые за дисциплиной, сформированы на уровне — «хороший».
67-50/ D,E	«удовлетвори- тельно»/ «зачтено (удовле- твори-тельно)»/ «зачтено»	Выставляется обучающемуся, если он знает на базовом уровне теоретический и практический материал, допускает отдельные ошибки при его изложении на занятиях и в ходе промежуточной аттестации. Обучающийся испытывает определённые затруднения в применении теоретических положений при решении практических задач профессиональной направленности стандартного уровня сложности, владеет необходимыми для этого базовыми навыками и приёмами. Демонстрирует достаточный уровень знания учебной литературы по дисциплине. Оценка по дисциплине выставляются обучающемуся с учётом результатов текущей и промежуточной аттестации. Компетенции, закреплённые за дисциплиной, сформированы на уровне — «достаточный».
49-0/ F,FX	«неудовлетвори- тельно»/ не зачтено	Выставляется обучающемуся, если он не знает на базовом уровне теоретический и практический материал, допускает грубые ошибки при его изложении на занятиях и в ходе промежуточной аттестации. Обучающийся испытывает серьёзные затруднения в применении теоретических положений при решении практических задач профессиональной направленности стандартного уровня сложности, не владеет необходимыми для этого навыками и приёмами. Демонстрирует фрагментарные знания учебной литературы по дисциплине. Оценка по дисциплине выставляются обучающемуся с учётом результатов текущей и промежуточной аттестации. Компетенции на уровне «достаточный», закреплённые за дисциплиной, не сформированы.

При оценивании защиты практической работы учитывается:

- полнота выполненной работы (задание выполнено не полностью и/или допущены две и более ошибки или три и более неточности) 1-7 балла;
- обоснованность содержания и выводов работы (задание выполнено полностью, но обоснование содержания и выводов недостаточны, но рассуждения верны) 8-12 баллов;
- работа выполнена полностью, в рассуждениях и обосновании нет пробелов или ошибок, возможна одна неточность 13-15 баллов.

Промежуточная аттестация (экзамен)

При проведении промежуточной аттестации студент должен ответить на 2 вопроса теоретического характера.

При оценивании ответа на вопрос теоретического характера учитывается:

- теоретическое содержание не освоено, знание материала носит фрагментарный характер, наличие грубых ошибок в ответе (1-10 баллов);
- теоретическое содержание освоено частично, допущено не более двух-трех недочетов (11-20 баллов);
- теоретическое содержание освоено почти полностью, допущено не более одного-двух недочетов, но обучающийся смог бы их исправить самостоятельно (21-30 баллов);
- теоретическое содержание освоено полностью, ответ построен по собственному плану (31-40 баллов).

5.3 Оценочные средства (материалы) для текущего контроля успеваемости, промежуточной аттестации обучающихся по дисциплине

Вопросы к текущей аттестации

- 1. Основные вызовы больших данных (4V).
- 2. Определение термина "большие данные".
- 3. Принципы аналитики.
- 4. Процесс аналитики.
- 5. Классификация задач.
- 6. Функция конкурентного сходства.
- 7. Разработка алгоритмов на базе FRiS-функции.
- 8. Информативность и выбор признаков.
- 9. Обнаружение ошибок и заполнение пробелов.
- 10. Структура языка R.
- 11. Функции.
- 12. Объекты.
- 13. Поведение объектов.
- 14. Выражения.
- 15. Основные функции.
- 16. Специальные значения.
- 17. Приведение типов.
- 18. Константы (векторы: числовые, буквенные; символы).
- 19. Операторы (приоритет операций, присвоение).
- 20. Управляющие структуры (условный оператор; цикл).
- 21. Структуры данных (индексы: вектор чисел, вектор логических значений, имена).
- 22. Примитивные типы.
- 23. Векторы, списки, матрицы, массивы.
- 24. Таблицы "объект-свойство".
- 25. Возможности библиотеки Pandas.
- 26. Зачем нужны новые хранилища.
- 27. Определение BigData (3V).
- 28. Определение BigData (5V+).
- 29. Скорость в RDBMS
- 30. Масштабирование в RDBMS.
- 31. Разнообразие в RDBMS.
- 32. Структурированность данных.
- 33. Что такое HBase.
- 34. Модель данных HBase. Таблица HBase.

- 35. Свойства документо-ориентированных баз.
- 36. MongoDB.
- 37. Репликации и шардинг в MongoDB.
- 38. Свойства графовых баз данных.
- 39. Примеры графов.
- 40. Позиционирование.
- 41. Neo4j что это?
- 42. Схема данных Neo4j.
- 43. Интерфейсы Neo4j.
- 44. Gephi open-source инструмент анализа и визуализации сетей.
- 45. Запросы в Neo4j.
- 46. Графовые базы и распределенность.

Вопросы к зачету с оценкой

- 1. Предпосылки формирования тренда больших данных.
- 2. Представление о работе аналитика.
- 3. Базовое представление о Мар Reduce и Hadoop.
- 4. Когнитивный анализ данных.
- 5. Существующие подходы к решению задачи распознавания.
- 6. Общие сведения о языке R. Основные принципы и структура.
- 7. Инструменты Data Mining. Обзор решений.
- 8. Возможности инструментов Data Mining. Достоинства и недостатки.
- 9. Области применимости. Weka.
- 10. Визуализация.
- 11. R как инструмент Data Mining.
- 12. Хранение и доступ к данным по средствам Data Frame.
- 13. Импорт и экспорт.
- 14. Классификация.
- 15. Регрессия.
- 16. Кластеризация.
- 17. R и Hadoop.
- 18. Основные библиотеки для Data Mining.
- 19. Свойства больших данных и ограничения RDBMS.
- 20. ACID требования.
- 21. САР-теорема.
- 22. BASE архитектура.
- 23. Что такое NoSQL.
- 24. Типы NoSQL.
- 25. Базы «ключ-значение».
- 26. Колоночные базы.
- 27. Документо-ориентированные базы.
- 28. Графовые базы.
- 29. Интерфейсы NoSQL баз.
- 30. Технология распределенных вычислений MapReduce.
- 31. Упрощенная схема MapReduce.
- 32. Распределение задания, операции map и reduce.

Пример практической работы.

Тестирование точности Data Mining-моделей.

Теперь модели обработаны и исследованы. Но насколько хорошо они предсказывают ситуацию? Работает ли какая-нибудь из моделей лучше, чем другие?

Используя страницу Mining Accuracy Chart, можно вычислить, как хорошо каждая из моделей предсказывает результат и сравнить их между собой. Этот метод срав-нения также иногда называется диаграммой роста (lift chart). На странице The Mining Accuracy Chart использует данные, отделённые от первоисточника, что позволяет сравнивать прогнозы с известными результатами. Затем результаты сортируются и отображаются на графике вместе с идеальной моделью, показывая, насколько хорошо каждая модель делает прогноз. График идеальной модели соответствует теоретической модели, предсказывающей результат со 100% точностью.

Создание и использование инструмента диаграммы роста

Отображение входных столбцов

Фильтрация входных столбцов

Диаграмма роста

Пример итоговой практической работы.

Создание прогнозов.

Теперь, после того как закончили с моделями анализа, можете перейти к созданию DMX запросов, используя Prediction Query Builder. Prediction Query Builder анало-гичен Access Query Builder, где можно использовать drag-and-drop для построения за-просов.

□ Создание запросов□ Просмотр результатов

6 Учебно-методическое и информационное обеспечение дисциплины

6.1 Список источников и литературы

Основная литература

- 1. Лесковец, Ю. Анализ больших наборов данных : практическое руководство / Д. Дж. Ульман, Ю. Лесковец, А. Раджараман ; пер. с англ. А. А. Слинкина. 2-е изд. Москва : ДМК Пресс, 2023. 500 с. ISBN 978-5-89818-304-2. Текст : электронный. URL: https://znanium.com/catalog/product/2102592.
- 2. Мастицкий, С. Э. Статистический анализ и визуализация данных с помощью R : практическое руководство / С. Э. Мастицкий, В. К. Шитиков. 2-е изд. Москва : ДМК Пресс, 2023. 497 с. ISBN 978-5-89818-601-2. Текст : электронный. URL: https://znanium.com/catalog/product/2108480.
- 3. Кабаков, Р. R в действии. Анализ и визуализация данных на языке R : практическое руководство / Р. Кабаков ; пер. с англ. П. А. Волковой. 2-е изд. Москва : ДМК Пресс, 2023. 590 с. ISBN 978-5-89818-347-9. Текст : электронный. URL: https://znanium.com/catalog/product/2102634.

Дополнительная литература

- 1. Жукова, Г. С. Математический анализ. Том 1 : учебник / Г. С. Жукова, М. Ф. Рушайло ; под ред. Г. С. Жуковой. Москва : ИНФРА-М, 2024. 388 с. (Высшее образование). DOI 10.12737/1072169. ISBN 978-5-16-019247-5. Текст : электронный. URL: https://znanium.com/catalog/product/2100015.
- 2. Мартишин, С. А. Базы данных. Практическое применение СУБД SQL и NoSQL-типа для проектирования информационных систем: учебное пособие / С.А. Мартишин, В.Л. Симонов, М.В. Храпченко. Москва: ФОРУМ: ИНФРА-М, 2024. 368 с. (Высшее образование). ISBN 978-5-8199-0946-1. Текст: электронный. URL: https://znanium.com/catalog/product/2096940.

3. Варфоломеева, Т. Н. Структуры данных и основные алгоритмы их обработки: учебное пособие / Т. Н. Варфоломеева. - 2-е изд., стер. - Москва: ФЛИНТА, 2023. - 159 с. - ISBN 978-5-9765-3691-3. - Текст: электронный. - URL: https://znanium.com/catalog/product/2091302.

6.2 Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. <u>Электронно-библиотечная система «Знаниум» Режим доступа: http://znanium.com</u>
- 2. Информационная система «Единое окно доступа к образовательным ресурсам». Режим доступа: http://window.edu.ru
- 3. Онлайн-энциклопедия. Режим доступа: http://encyclopedia.ru
- 4. Электронный справочник «Информио» для высших учебных заведений. Режим доступа: http://www.informio.ru
- 5. КонсультантПлюс. Правовая поддержка. Режим доступа: http://www.consultant.ru/
- 6. Национальный открытый университет «ИНТУИТ». Режим доступа: https://www.intuit.ru/
- 7. Сайт Microsoft Режим доступа: https://msdn.microsoft.com/ru-ru/library/
- 8. Научная библиотека РГГУ Режим доступа: http://liber.rsuh.ru/
- 9. «CITFORUM»: Аналитическая информация в сфере IT. Режим доступа: http://citforum.ru/

6.3 Профессиональные базы данных и информационно-справочные системы

Доступ к профессиональным базам данных: https://liber.rsuh.ru/ru/bases

Информационные справочные системы:

- 1. Консультант Плюс
- 2. Гарант

7 Материально-техническое обеспечение дисциплины

Для материально-технического обеспечения дисциплины необходимы:

- для лекций:
- учебная аудитория,
- доска,
- проектор (стационарный или переносной),
- компьютер или ноутбук,
- программное обеспечение (ПО).

Перечень программного обеспечения (ПО)

№п/п	Наименование ПО	Способ распространения
1	Microsoft Office 2010 Pro	лицензионное
2	Windows 10	лицензионное
3	Kaspersky Endpoint Security	лицензионное
4	Zoom	лицензионное

- для практических занятий:
- лаборатория,
- доска,
- проектор (стационарный или переносной),

- компьютер или ноутбук для преподавателя,
- компьютеры для обучающихся,
- выход в Интернет,
- программное обеспечение (ПО).

Перечень программного обеспечения (ПО)

Наименование ПО	Способ распространения
Windows 10	лицензионное
Microsoft Office 2010 Pro	лицензионное
Mozilla Firefox	свободно распространяемое
Kaspersky Endpoint Security	лицензионное
Язык программирования R	свободно распространяемое
Microsoft SQL Server	свободно распространяемое
Zoom	лицензионное

Профессиональные полнотекстовые базы данных:

- 1. Национальная электронная библиотека (НЭБ) www.rusneb.ru
- 2. ELibrary.ru Научная электронная библиотека www.elibrary.ru
- 3. Электронная библиотека Grebennikon.ru www.grebennikon.ru
- 4. Cambridge University Press
- 5. ProQuest Dissertation & Theses Global
- 6. SAGE Journals
- 7. Taylor and Francis
- 8. JSTOR

Информационные справочные системы:

- 1. Консультант Плюс
- 2. Гарант

8 Обеспечение образовательного процесса для лиц с ограниченными возможностями здоровья

В ходе реализации дисциплины используются следующие дополнительные методы обучения, текущего контроля успеваемости и промежуточной аттестации обучающихся в зависимости от их индивидуальных особенностей:

- для слепых и слабовидящих:
- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
- письменные задания выполняются на компьютере со специализированным программным обеспечением, или могут быть заменены устным ответом;
 - обеспечивается индивидуальное равномерное освещение не менее 300 люкс;
- для выполнения задания при необходимости предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств;
 - письменные задания оформляются увеличенным шрифтом;
- экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.
 - для глухих и слабослышащих:
- лекции оформляются в виде электронного документа, либо предоставляется звукоусиливающая аппаратура индивидуального пользования;
 - письменные задания выполняются на компьютере в письменной форме;

- экзамен и зачёт проводятся в письменной форме на компьютере; возможно проведение в форме тестирования.
 - для лиц с нарушениями опорно-двигательного аппарата:
- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
- письменные задания выполняются на компьютере со специализированным программным обеспечением;
- экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.

При необходимости предусматривается увеличение времени для подготовки ответа.

Процедура проведения промежуточной аттестации для обучающихся устанавливается с учётом их индивидуальных психофизических особенностей. Промежуточная аттестация может проводиться в несколько этапов.

При проведении процедуры оценивания результатов обучения предусматривается использование технических средств, необходимых в связи с индивидуальными особенностями обучающихся. Эти средства могут быть предоставлены университетом, или могут использоваться собственные технические средства.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети Интернет для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации:

- для слепых и слабовидящих:
- в печатной форме увеличенным шрифтом;
- в форме электронного документа;
- в форме аудиофайла.
- для глухих и слабослышащих:
- в печатной форме;
- в форме электронного документа.
- для обучающихся с нарушениями опорно-двигательного аппарата:
- в печатной форме;
- в форме электронного документа;
- в форме аудиофайла.

Учебные аудитории для всех видов контактной и самостоятельной работы, научная библиотека и иные помещения для обучения оснащены специальным оборудованием и учебными местами с техническими средствами обучения:

- для слепых и слабовидящих:
 - устройством для сканирования и чтения с камерой SARA CE;
 - дисплеем Брайля PAC Mate 20;
 - принтером Брайля EmBraille ViewPlus;
- для глухих и слабослышащих:
- автоматизированным рабочим местом для людей с нарушением слуха и слабослышаших:
 - акустический усилитель и колонки;
 - для обучающихся с нарушениями опорно-двигательного аппарата:
 - передвижными, регулируемыми эргономическими партами СИ-1;
 - компьютерной техникой со специальным программным обеспечением.

9 Методические материалы

9.1 Планы практических занятий

Практическая работа № 1 Построение и работа с моделями Data Mining

Цель работы: знакомство с методами решения задач Data Mining. Задание

- 1. Изучить различные алгоритмы для создания моделей Data Mining, позволяющих производить различные виды анализа данных, на основе базы данных AdventureWorksDW.
- 2. Построение классификатора для индивидуального набора данных при помощи следующих алгоритмов:
 - а. Наивный байесовский классификатор (Naive Bayes);
 - b. Деревья решений (Classification tree).
- 3. Тестирование эффективности алгоритмов для анализа индивидуального набора данных.

Редактор Data Mining содержит все инструменты и средства отображения для построения и работы с моделями Data Mining. Дополнительная информация по редактору доступна в разделе "Using the Data Mining Tools" в SQL Server Books Online.

Работа со следующими сценариями:

- Целевая отправка писем (Targeted mailing)
- Прогнозирование (Forecasting)
- Рыночная корзина (Market basket)
- Кластеризация последовательностей (Sequence clustering)

В сценарии «Целевая отправка писем» - построение моделей, сравнение их ожидаемых возможностей (при помощи окна Mining Accuracy Chart), а также созданием прогнозов с использованием Prediction Query Builder.

Адресная рассылка

Отдел маркетинга компании Adventure Works заинтересован в увеличении продаж при помощи проведения почтовой кампании, нацеленной на определённых покупателей. Исследуя их характеристики, они хотят обнаружить некоторый шаблон, применимый к потенциальным клиентам, который мог бы впоследствии использоваться для определения наиболее вероятных покупателей.

Кроме того, отдел маркетинга намеревается выявить логические группы среди уже существующих в их базе данных клиентов. Например, группа может содержать по-купателей, объединённых по демографическому признаку, обладающих схожим набором покупок.

Adventure Works располагает списком как бывших, так и потенциальных клиентов.

В процессе решения этой задачи, отделу маркетинга потребуется выполнить следующие действия:

- Установить модели, способные выявить наиболее вероятных клиентов из списка потенциальных покупателей
- Кластеризовать своих существующих клиентов

Для выполнения этого сценария потребуется использовать Microsoft Native Bayes, Microsoft Decision Trees, и Microsoft Clustering алгоритмы. Сценарий содержит в себе 5 задач:

- Создание проекта служб Analysis Services
- Создание источника данных
- Создание представления источника данных
- Создание структуры модели Data Mining
- Редактирование Data Mining моделей

Контрольные вопросы

1. Data Mining. Основные понятия и определения. Шкалы. Задачи анализа данных.

- 2. Классификация. Основные понятия и определения. Правила и деревья классификации. Их соответствие.
- 3. Классификация. Правила классификации. Алгоритм построения 1-правил. Сверхчувствительность.
- 4. Классификация. Правила классификации. Алгоритм Naive Bayes.
- 5. Классификация. Деревья классификации. Алгоритм ID3. Недостатки алгоритма ID3
- 6. Классификация. Деревья классификации. Недостатки алгоритма ID3. Алгоритм C4.5.
- 7. Классификация. Правила и деревья классификации. Алгоритм покрытия.

Практическая работа № 2 Исследование моделей

Цель работы: рассмотреть возможности SSAS по предоставлению сведений о разработанной модели данных.

После того как модели обработаны, можно просмотреть их, используя закладку Mining Model Viewer в редакторе Data Mining. При помощи выпадающего списка Mining Model в верхней части закладки можно исследовать модели, входящие в структуру.

- Модель Microsoft Decision Trees
- Decision Tree (Дерево решений)
- Сеть зависимостей (Dependency Network)
- Модель Microsoft Clustering
- Кластерная диаграмма (Cluster Diagram)
- Профили кластеров (Cluster Profiles)
- Характеристики кластеров (Cluster Characteristics)
- Cluster Discrimination
- Модель Microsoft Native Bayes
- Сеть зависимостей (Dependency Network)
- Профили атрибута (Attribute Profiles)
- Характеристики атрибута (Attribute Characteristics)
- Attribute Discrimination

Контрольные вопросы

- 1. Для чего предназначены средства по исследованию моделей?
- 2. Какие сведения они могут предоставить, как это может пригодиться в СППР?
- 3. Какие из рассмотренных алгоритмов предпочтительны для использования, в каких областях?

Практическая работа № 3 Тестирование точности Data Mining-моделей

Цель работы: выполнить проверку точности моделей.

Задание

Теперь модели обработаны и исследованы. Но насколько хорошо они предсказывают ситуацию? Работает ли какая-нибудь из моделей лучше, чем другие?

Используя страницу Mining Accuracy Chart, можно вычислить, как хорошо каждая из моделей предсказывает результат и сравнить их между собой. Этот метод сравнения также иногда называется диаграммой роста (lift chart). На странице The Mining Accuracy Chart использует данные, отделённые от первоисточника, что позволяет сравнивать прогнозы с известными результатами. Затем результаты сортируются и отображаются на графике вместе с идеальной моделью, показывая, насколько хорошо каждая модель делает прогноз. График идеальной модели соответствует теоретической модели, предсказывающей результат со 100% точностью.

Создание и использование инструмента диаграммы роста

- Отображение входных столбцов
- Фильтрация входных столбцов
- Диаграмма роста

Контрольные вопросы

- 1. Прокомментируйте полученные результаты
- 2. Что такое идеальная модель
- 3. Какая из моделей наиболее близка к идеальной, как вы думаете почему?

Практическая работа № 4 Создание прогнозов

Цель работы Рассмотреть возможности пакета ВІ по решению задач прогнозирования Залание

Теперь, после того как закончили с моделями анализа, можете перейти к созданию DMX запросов, используя Prediction Query Builder. Prediction Query Builder аналогичен Access Query Builder, где можно использовать drag-and-drop для построения запросов.

- Создание запросов
- Просмотр результатов Контрольные вопросы
 - 1. Для решения каких практических задач используется прогнозирование?
 - 2. Какие методы прогнозирования вы знаете?

Приложение 1. Аннотация рабочей программы дисциплины

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Дисциплина реализуется на факультете <u>информационных систем и безопасности</u> кафедрой <u>информационных технологий и систем</u>

<u>Цель дисциплины:</u> формирование компетенций в области использования информации, обработки и анализа ее для информационно-аналитической поддержки принятия управленческих решений, изучение методов обработки структурированных и неструктурированных многообразных данных огромных объёмов для получения воспринимаемых человеком результатов.

Задачи:

- приобретение знаний о технологиях подготовки, хранения, обработки и анализа больших данных;
- приобретение практических навыков работы большими данными
- изучение методов хранения и управления данными формата Big Data;
- изучение методов организации и анализа данных формата Big Data.

Дисциплина направлена на формирование следующих компетенций:

- $\Pi K-3$ Способен анализировать и оценивать состояние сегментов финансового рынка, участников финансовых рынков, деятельности хозяйствующих субъектов, в том числе с применением современных информационных технологий.
- ПК 4 Способен составлять аналитические материалы, отчеты, доклады для принятия обоснованных финансовых и инвестиционных решений, в том числе с применением современных информационных технологий.

В результате освоения дисциплины обучающийся должен:

Знать: методы извлечения знаний из данных, основные принципы и методы хранения, управления, обработки, анализа данных формата Big Data, инновационные инструментальные средства ИТ-сферы для работы с большими данными, технологии хранения больших данных.

Уметь: анализировать современные потоки данных, находить, извлекать и структурировать данные, строить модели для данных, хранящихся в распределенной файловой системе, работать с программными средствами для хранения и анализа данных, разрабатывать и адаптировать программные компоненты работы с данными для нужд предприятия.

Владеть: современными методами анализа полученных результатов по сегментам финансового рынка, современными инструментальными средствами прогнозного моделирования и анализа данных, навыками проектирования информационных процессов и систем с использованием инновационных инструментальных средств, инструментами Data Mining.

Общая трудоемкость освоения дисциплины составляет 3 зачетные единицы.